PAM1014
Introduction to Radiation
Physics
"Operations \& Equations"

In this Lecture

- Introduce
- Operations
- Powers
- Roots
- Reciprocals
- Solving Equations

Operations

Addition (+)

- The most basic operation of arithmetic.
- Combines two numbers, the addends or terms, into a single number, the sum.
- e.g. $3+2=5$
$1+7=8$
etc

Operations

Multiplication (x)

- Can be interpreted as repeated addition
- e.g. $7 \times 3=21$
$7+7+7=21$
$2.1 \times 3=6.3$
$2.1+2.1+2.1=6.3$
etc

Operations

Subtraction (-)

- Essentially the opposite of addition
- e.g. $9-1=8$
$1-1=0$
$2-5=-3$
etc

Operations

Multiplication (x)

- Example:
$-3 \times 5=15$
- Alternative notation

$$
\begin{aligned}
& a \times b \\
& a \cdot b \\
& a b
\end{aligned}
$$

Operations

Division (\div)

- Inverse of multiplication
- Can be interpreted as repeated subtraction
- e.g. $9 \div 3=3$
i.e. there are THREE 3's in 9!
- Alternative notation

$$
\frac{9}{3}=3
$$

Common Mistakes

Powers

Positive integer exponents

- Indicates repeated multiplication by the base
- Examples:
$3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$
- 3 is the base
- 5 is the exponent

Operations

-Things worth remembering:
$(a \times b) \times c=a \times(b \times c)=b \times(a \times c)=a \times b \times c$
$(a+b) \times c=(a \times c)+(b \times c)$
$(a b+c b)=(a+c) \times b$
$(+) \times(-)=(-)$
$(-) \times(-)=(+)$
$(+) \div(-)=(-)$
$(-) \div(+)=(-)$
$(-) \div(-)=(+)$

Powers

- Exponentiation (or Powers) is a process generalized from repeated (or iterated) multiplication.
- The same way that multiplication is a process generalized from repeated addition.

Examples

$2^{3}=$
$3^{3}=$
$5^{2}=$
$10^{3}=$
$10^{9}=$

Powers

Negative integer exponents

- Indicates repeated division by the base
- Example

$$
3^{-5}=\frac{1}{3 \times 3 \times 3 \times 3 \times 3}=\frac{1}{243}
$$

Examples

$2^{-1}=$
$2^{-3}=$
$5^{-2}=$
$10^{-3}=$
$10^{-9}=$

Reciprocals

- Any nonzero number to the (-1) power produces its reciprocal

$$
x^{-1}=\frac{1}{x} ; \quad x^{-n}=\left(x^{n}\right)^{-1}=\frac{1}{x^{n}}
$$

- The reciprocal of a number x is the number which, when multiplied by x, yields 1 .

$$
\frac{1}{x} \times x=1 ; \quad x^{-1} \times x=1
$$

Reciprocals

- Note:
- Sometimes different styles are used
- For example,
- Units of speed (or velocity) $=\mathrm{m} / \mathrm{s}=\mathrm{ms}^{-1}$
- Units of acceleration $=\mathrm{m} / \mathrm{s}^{2}=\mathrm{ms}^{-2}$

Roots

- Square root ((\checkmark)

$$
\text { If } r^{2}=x ; \quad r=\sqrt{\mathrm{x}}
$$

- Cube root $(\sqrt[3]{ })$

$$
\text { If } r^{3}=x ; \quad r=\sqrt[3]{x}
$$

Roots

- Expressing roots as powers

$$
\sqrt{\mathrm{x}}=x^{\frac{1}{2}} \sqrt[3]{x}=x^{\frac{1}{3}} \sqrt[4]{x}=x^{\frac{1}{4}}
$$

$$
\sqrt[y]{x}=X^{\frac{1}{y}}
$$

Examples

$$
\begin{aligned}
& 4^{1 / 2}= \\
& 9^{1 / 2}= \\
& 125^{1 / 3}=
\end{aligned}
$$

Powers

- Combinations

$$
x^{\frac{z}{y}}=(\sqrt[y]{x})^{z}
$$

- Examples

$$
\begin{aligned}
& 9^{\frac{3}{2}}= \\
& 8^{\frac{2}{3}}= \\
& 1000^{\frac{2}{3}}=
\end{aligned}
$$

Powers

- Important identities satisfied by exponentiation include:

$$
\begin{aligned}
& x^{m+n}=x^{m} x^{n} \\
& x^{m-n}=\frac{x^{m}}{x^{n}} \\
& \left(x^{m}\right)^{n}=x^{m n}
\end{aligned}
$$

Any number to the power of zero is equal to 1

$$
x^{0}=1
$$

Powers

- Combinations

$$
x^{-\frac{1}{y}}=\frac{1}{\sqrt[y]{x}}
$$

- Examples

$$
\begin{aligned}
& 9^{-\frac{1}{2}}= \\
& 8^{-\frac{1}{3}}= \\
& 1000^{-\frac{1}{3}}=
\end{aligned}
$$

Powers

- Combinations

$$
x^{-\frac{z}{y}}=\frac{1}{(\sqrt[y]{x})^{z}}
$$

- Examples

$$
\begin{aligned}
9^{-\frac{3}{2}} & = \\
8^{-\frac{2}{3}} & = \\
1000^{-\frac{2}{3}} & =
\end{aligned}
$$

Examples

$10^{4} \times 10^{6}=$
$10^{-3} \times 10^{4}=$
$10^{-3} \times 10^{3}=$
$10^{3} \div 10^{4}=$

Solving Equations

Solving Equations

- Equations are mathematical statements with two expressions separated by an equal sign.
- The expression on the left side of the equal sign has the same value as the expression on the right side.
- One or both of the expressions may contain variables.
- Solving an equation means manipulating the expressions to find the values of the variables.

Solving Equations

- To keep both sides of an equation equal, we must do exactly the same thing to each side of the equation.
- If we multiply (or divide) one side by a quantity, we must multiply (or divide) the other side by that same quantity.
- If we add (or subtract) a quantity from one side, we must add (or subtract) that same quantity from the other side.

Solving Equations

- Examples

Background Reading

- FLAP Module M 1.1
- FLAP Module M 1.4
- Sections 1, 2

